# **Climate Change**

# The Scale & Urgency of the Challenge

## **Brian Hoskins**

#### **UK Climate Change Committee**

Director, Grantham Institute for Climate Change Imperial College, UK

Royal Society Research Professor, University of Reading ,UK



(water vapour) carbon dioxide, methane,... Fourier (1827), Tyndall (1861)

### Causes of the current imbalance in the energy budget IPCC 2007



Radiative forcing of climate between 1750 and 2005

# IPCC 2007 Fourth Assessment Report: "Global Warming is unequivocal"

#### Since 1970, rise in:

- Global surface temperatures
- Tropospheric temperatures
- Global ocean temperatures
- ✤ Global sea level
- Water vapour
- Rainfall intensity
- Precipitation in extratropics
- Drought
- Extreme high temperatures
- Summer Greenland ice sheet melt

#### Decrease in:

NH Snow extent Arctic sea ice Glaciers Cold temperature extremes 20<sup>th</sup> Century Continental Temperatures: Observed & Modelled with & without anthropogenic forcings



### Projections of globally averaged surface warming

**IPCC 2007** 



### Surface Temperature & Precipitation Projections Dec-Feb and June-Aug: 2090s relative to 1980-99



### **IPCC Projections of Sea Level Rise at 2100**



#### Acidification of the oceans



## **Mechanisms for extreme changes?**

- •Large dynamical ice sheet loss: Greenland & West Antarctic
- •Reduced carbon absorption/emission: soil, vegetation, ocean
- •Methane emission from melting tundra, peat, hydrates
- Rapid change in the circulation of the atmosphere/ocean: reduction in the Atlantic northward heat transport frequency or nature of ENSO Asian monsoon circulation summer European blocking nature or location of winter storm-track nature or location of tropical cyclones
  Complex dynamical system behaviour

#### 6 Global warming above present temperature (°C) Year 2100 (IPCC 2007) 5 Atlantic meridional overturning circulation Sahara/Sahel and West African monsoon El Niño southern oscillation amplitude 4 3 West Antarctic ice sheet Arctic summer sea ice Greenland ice sheet Amazon rainforest 2. Boreal forest 0

**Burning Embers** 

range

Potential policy-relevant tipping elements that could be triggered by global warming this century, with shading indicating their uncertain thresholds. For each threshold, the transition from white to yellow indicates a lower bound on its proximity, and the transition from yellow to red, an upper bound. The degree of uncertainty is represented by the spread of the colour transition.

T. M. Lenton & H.J. Schellnhuber (Nature Reports Climate Change, 2007)

# **Updated Reasons for Concern**



TAR (2001) Reasons For Concern

Proposed AR4 (2007) Reasons For Concern

(Smith et al. 2009 PNAS)

### First Report of the UK Climate Change Committee Dec 2008: Building a Low-Carbon Economy – The UK's Contribution to Tackling Climate Change

**Recent observed trends in CO<sub>2</sub> emissions & concentrations** 



Trend in global carbon dioxide emissions from fossil fuel burning and other industrial processes (source: CDIAC)

Observed trend in global atmospheric CO<sub>2</sub> concentration (source: NOAA/ESRL)

#### Kyoto GHG emissions trajectories designed by the CCC

•Peak in emissions around 2028 or 2016.

•Subsequent reductions in  $CO_2$  emissions range from 1.5% to 4% per year.

•Other Kyoto gas emissions are reduced at consistent rates, with consideration of the ultimate emissions 'floor' that might be reasonably reached.



Peak 2028  $CO_2$  emissions reducing at 1.5% or 4%. Peak 2016 CO<sub>2</sub> emissions reducing at 1.5%, 3% or 4%. 2016:3% and 2016:4% were given lower emissions floors

### Some projected CO<sub>2</sub>e concentrations

CCC 2008



# **Examples of projected global mean temperatures** CCC 2008



### Probability distributions of global mean temperature increase by 2100 CCC 2008



## **Preferred trajectories: emissions target for 2050** CCC 2008

| Emissions  | Kyoto gas emissions (GtCO <sub>2</sub> e) |      |      | 2050 emissions cut, from |      |
|------------|-------------------------------------------|------|------|--------------------------|------|
| trajectory | 1990                                      | 2007 | 2050 | 1990                     | 2007 |
| 2016:3%    | 36.1                                      | 48.1 | 23.9 | 34%                      | 50%  |
| 2016:4%    | 36.1                                      | 48.1 | 19.6 | 46%                      | 59%  |

Broadly in line with the G8 commitment to halve emissions by 2050.



#### **Cumulative emissions perspective**

| 6:3%low  |           |                      |           |
|----------|-----------|----------------------|-----------|
| 6:3%high | Years     | Gt CO <sub>2</sub> e | Tt Ce     |
| 6:1.5%   | 1990-2008 | 800                  | 0.22      |
|          | 1990-2050 | 2420-2540            | 0.66-0.69 |
|          | 1990-2100 | 3000-3200            | 0.82-0.87 |

Year

## **CCC** proposed UK CO<sub>2</sub>e emission targets



### Appropriate UK contribution : the scale of the challenge

CCC 2008



\* bunker fuels basis