# **CO<sub>2</sub>** abatement in the Energy and Petrochemicals industry



#### Business as usual - total final consumption



Source: Shell International BV and Energy Balances of OECD and Non-OECD Countries ©OECD/IEA 2006

### Energy sustainability drives mix- Blueprints

#### Total primary energy (EJ per year)



- Broad awareness of challenges at all levels, not only national
- Critical mass of parallel responses to hard truths
- Effective carbon pricing established early
  - Rerouted to renewables
  - Taxes on imported fossil fuels
- Efficiency standards
- Electrification of transport sector
- New infrastructure develops e.g. CCS emerges after 2020

■ Oil ■ Gas ■ Coal ■ Nuclear ■ Biomass ■ Solar ■ Wind ■ Other Renewables

#### **GHG abatement:** beyond business-as-usual 2030



Note: The curve presents an estimate of the maximum potential of all technical GHG abatement measures below €60 per tCO<sub>2</sub>e if each lever was pursued aggressively. It is not a forecast of what role different abatement measures and technologies will play. Source: Global GHG Abatement Cost Curve v2.0

#### **Global GHG Emissions**



\* The estimate of behavioral change abatement potential was made after implementation of all technical levers; the potential would be higher if modeled before implementation of the technical levers. Source: Global GHG Abatement Cost Curve v2.0; Houghton; IEA; US EPA

## **Technology Challenges**

#### **MORE ENERGY**

- Recovery and Upgrading of unconventional hydrocarbons
- Energy from contaminated gas  $(H_2S, CO_2)$
- Transportation fuels from sustainable sources of biomass

#### LESS CO<sub>2</sub>

- Process intensification (energy efficiency, capex)
- Capture / use of low value process heat (60 200 °C)
- CO<sub>2</sub> capture and storage

#### In-Situ Upgrading Process (IUP)

#### **STANDARD IN SITU RECOVERY**



#### Gas Separation - Technology 1

#### **Conditions**

- -62 deg C < T < -20 deg C
- Pressure 10 30 bara
- Separates CO<sub>2</sub> as a liquid



#### **Gas Separation -** Technology 2







### **BIOMASS:** moving to the next generation



#### **TO BIO-ENERGY AND WASTE ORGANIC FEED STOCKS**

#### Application: Cellulosic Ethanol





### Application: **BTL**





### Application: Algae Diesel



**Cellana** (Shell/HR Biopetroleum)



### Process Technology Challenges

#### **MORE ENERGY**

- Recovery and Upgrading of unconventional hydrocarbons
- Energy from contaminated gas  $(H_2S, CO_2)$
- Transportation fuels from sustainable sources of biomass

#### LESS CO<sub>2</sub>

- Process intensification (energy efficiency, capex)
- Capture / use of low value process heat (60 200 °C)
- CO<sub>2</sub> capture and storage

#### Improvement of GTL catalyst performance



### **Gasturbine Efficiency Improvements**



#### Power generation Efficiency: Refinery Trend





#### **Carbon Capture and Storage Technologies**



#### **Efficiency Improvements**

Of both energy using equipment and processes

#### **Cleaner Generation**

Fuel switch

#### **Technology Challenges**

- Novel Catalyst/Reactor Combinations
- Novel Separations
- Equipment development
- Reduction in CAPEX Intensity
- Reduction of Environmental Footprint
- Smart Fields, Plants and Sites
- Distributed Manufacturing

#### **BIG IMPACT:** from small innovations



